Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Infect Dis ; 226(9): 1568-1576, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: covidwho-2306474

RESUMO

Isolated reports of new-onset diabetes in patients with coronavirus disease 2019 (COVID-19) have led researchers to hypothesize that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects human exocrine and endocrine pancreatic cells ex vivo and in vivo. However, existing research lacks experimental evidence indicating that SARS-CoV-2 can infect pancreatic tissue. Here, we found that cats infected with a high dose of SARS-CoV-2 exhibited hyperglycemia. We also detected SARS-CoV-2 RNA in pancreatic tissues of these cats, and immunohistochemical staining revealed the presence of SARS-CoV-2 nucleocapsid protein (NP) in islet cells. SARS-CoV-2 NP and spike proteins were primarily detected in glucagon-positive cells, and most glucagon-positive cells expressed ACE2. Additionally, immune protection experiments conducted on cats showed that blood glucose levels of immunized cats did not increase postchallenge. Our data indicate cat pancreas as a SARS-CoV-2 target and suggest that the infection of glucagon-positive cells could contribute to the metabolic dysregulation observed in SARS-CoV-2-infected cats.


Assuntos
COVID-19 , Hiperglicemia , Animais , Gatos , Humanos , COVID-19/complicações , COVID-19/veterinária , Glucagon , Hiperglicemia/veterinária , Hiperglicemia/virologia , RNA Viral , SARS-CoV-2
2.
The Journal of infectious diseases ; 2022.
Artigo em Inglês | EuropePMC | ID: covidwho-1824578

RESUMO

Isolated reports of new-onset diabetes in patients with COVID-19 have led researchers to hypothesise that SARS-CoV-2 infects the human exocrine and endocrine pancreatic cells ex vivo and in vivo. However, existing research lacks experimental evidence indicating that SARS-CoV-2 can infect pancreatic tissue. Here, we found that cats infected with a high dose of SARS-CoV-2 exhibited hyperglycaemia. We also detected SARS-CoV-2 RNA in the pancreatic tissues of these cats, and immunohistochemical staining revealed the presence of SARS-CoV-2 nucleocapsid protein (NP) in the islet cells. SARS-CoV-2 NP and Spike proteins were primarily detected in Glu+ cells, and most Glu+ cells expressed ACE2. Additionally, immune protection experiments conducted on cats showed that the blood glucose levels of immunised cats did not increase post-challenge. Our data indicate the cat pancreas as a SARS-CoV-2 target and suggest that the infection of Glu+ cells could contribute to the metabolic dysregulation observed in SARS-CoV-2-infected cats.

3.
Innovation in Language Learning and Teaching ; : 1-14, 2021.
Artigo em Inglês | Taylor & Francis | ID: covidwho-1429109
4.
Bioengineered ; 12(1): 2836-2850, 2021 12.
Artigo em Inglês | MEDLINE | ID: covidwho-1297360

RESUMO

Angiotensin I-converting enzyme 2 (ACE2), type II transmembrane serine protease 2 and 4 (TMPRSS2 and TMPRSS4) are important receptors for SARS-CoV-2 infection. In this study, the full-length tree shrewACE2 gene was cloned and sequenced, and its biological information was analyzed. The expression levels of ACE2, TMPRSS2 and TMPRSS4 in various tissues or organs of the tree shrew were detected. The results showed that the full-length ACE2 gene in tree shrews was 2,786 bp, and its CDS was 2,418 bp, encoding 805 amino acids. Phylogenetic analysis based on the CDS of ACE2 revealed that tree shrews were more similar to rabbits (85.93%) and humans (85.47%) but far from mice (82.81%) and rats (82.58%). In silico analysis according to the binding site of SARS-CoV-2 with the ACE2 receptor of different species predicted that tree shrews had potential SARS-CoV-2 infection possibility, which was similar to that of rabbits, cats and dogs but significantly higher than that of mice and rats. In addition, various tissues or organs of tree shrews expressed ACE2, TMPRSS2 and TMPRSS4. Among them, the kidney most highly expressed ACE2, followed by the lung and liver. The esophagus, lung, liver, intestine and kidney had relatively high expression levels of TMPRSS2 and TMPRSS4. In general, we reported for the first time the expression of ACE2, TMPRSS2 and TMPRSS4 in various tissues or organs in tree shrews. Our results revealed that tree shrews could be used as a potential animal model to study the mechanism underlying SARS-CoV-2 infection.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19/etiologia , Proteínas de Membrana/genética , SARS-CoV-2 , Serina Endopeptidases/genética , Tupaiidae/genética , Tupaiidae/metabolismo , Sequência de Aminoácidos , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Bioengenharia , COVID-19/enzimologia , COVID-19/genética , Biologia Computacional , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Filogenia , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Homologia Estrutural de Proteína , Distribuição Tecidual , Tupaiidae/virologia
5.
Viruses ; 13(6)2021 06 15.
Artigo em Inglês | MEDLINE | ID: covidwho-1270129

RESUMO

Influenza is a highly known contagious viral infection that has been responsible for the death of many people in history with pandemics. These pandemics have been occurring every 10 to 30 years in the last century. The most recent global pandemic prior to COVID-19 was the 2009 influenza A (H1N1) pandemic. A decade ago, the H1N1 virus caused 12,500 deaths in just 19 months globally. Now, again, the world has been challenged with another pandemic. Since December 2019, the first case of a novel coronavirus (COVID-19) infection was detected in Wuhan. This infection has risen rapidly throughout the world; even the World Health Organization (WHO) announced COVID-19 as a worldwide emergency to ensure human health and public safety. This review article aims to discuss important issues relating to COVID-19, including clinical, epidemiological, and pathological features of COVID-19 and recent progress in diagnosis and treatment approaches for the COVID-19 infection. We also highlight key similarities and differences between COVID-19 and influenza A to ensure the theoretical and practical details of COVID-19.


Assuntos
COVID-19/epidemiologia , Vírus da Influenza A Subtipo H1N1/patogenicidade , Influenza Humana/epidemiologia , SARS-CoV-2/patogenicidade , Saúde Global , Humanos , Pandemias/prevenção & controle , Pandemias/estatística & dados numéricos , Organização Mundial da Saúde
6.
EBioMedicine ; 67: 103381, 2021 May.
Artigo em Inglês | MEDLINE | ID: covidwho-1228017

RESUMO

BACKGROUND: An ideal animal model to study SARS-coronavirus 2 (SARS-CoV-2) pathogenesis and evaluate therapies and vaccines should reproduce SARS-CoV-2 infection and recapitulate lung disease like those seen in humans. The angiotensin-converting enzyme 2 (ACE2) is a functional receptor for SARS-CoV-2, but mice are resistant to the infection because their ACE2 is incompatible with the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein . METHODS: SARS-CoV-2 was passaged in BALB/c mice to obtain mouse-adapted virus strain. Complete genome deep sequencing of different generations of viruses was performed to characterize the dynamics of the adaptive mutations in SARS-CoV-2. Indirect immunofluorescence analysis and Biolayer interferometry experiments determined the binding affinity of mouse-adapted SARS-CoV-2 WBP-1 RBD to mouse ACE2 and human ACE2. Finally, we tested whether TLR7/8 agonist Resiquimod (R848) could also inhibit the replication of WBP-1 in the mouse model. FINDINGS: The mouse-adapted strain WBP-1 showed increased infectivity in BALB/c mice and led to severe interstitial pneumonia. We characterized the dynamics of the adaptive mutations in SARS-CoV-2 and demonstrated that Q493K and Q498H in RBD significantly increased its binding affinity towards mouse ACE2. Additionally, the study tentatively found that the TLR7/8 agonist Resiquimod was able to protect mice against WBP-1 challenge. Therefore, this mouse-adapted strain is a useful tool to investigate COVID-19 and develop new therapies. INTERPRETATION: We found for the first time that the Q493K and Q498H mutations in the RBD of WBP-1 enhanced its interactive affinities with mACE2. The mouse-adapted SARS-CoV-2 provides a valuable tool for the evaluation of novel antiviral and vaccine strategies. This study also tentatively verified the antiviral activity of TLR7/8 agonist Resiquimod against SARS-CoV-2 in vitro and in vivo. FUNDING: This research was funded by the National Key Research and Development Program of China (2020YFC0845600) and Emergency Science and Technology Project of Hubei Province (2020FCA046) and Robert A. Welch Foundation (C-1565).


Assuntos
Substituição de Aminoácidos , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/virologia , Imidazóis/administração & dosagem , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/metabolismo , Adaptação Fisiológica , Animais , Sítios de Ligação , COVID-19/metabolismo , COVID-19/prevenção & controle , Células CACO-2 , Chlorocebus aethiops , Modelos Animais de Doenças , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imidazóis/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , SARS-CoV-2/genética , Inoculações Seriadas , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Células Vero , Replicação Viral/efeitos dos fármacos , Sequenciamento Completo do Genoma
7.
J Virol ; 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: covidwho-1127542

RESUMO

Age is a risk factor for coronavirus disease 2019 (COVID-19) associated morbidity and mortality in humans; hence, in this study, we compared the course of severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection in young and aged BALB/c mice. We found that SARS-CoV-2 isolates replicated in the respiratory tracts of 12-month-old (aged) mice and caused pathological features of pneumonia upon intranasal infection. In contrast, rapid viral clearance was observed 5 days following infection in 2-month-old (young) mice with no evidence of pathological changes in the lungs. Infection with SARS-CoV-2 elicited significantly upregulated production of cytokines, especially interleukin 6 and interferon gamma, in aged mice; whereas this response was much weaker in young mice. Subsequent challenge of infected aged BALB/c mice with SARS-CoV-2 resulted in neutralized antibody responses, a significantly reduced viral burden in the lungs, and inflammation mitigation. Deep sequencing showed a panel of mutations potentially associated with the enhanced infection in aged BALB/c mice, such as the Q498H mutations which are located at the receptor binding domain (RBD) of the spike (S) protein. We further found that the isolates can not only multiply in the respiratory tract of mice but also cause disease in aged mice. Overall, viral replication and rapid adaption in aged BALB/c mice were associated with pneumonia, confirming that the age-related susceptibility to SARS-CoV-2 in mice resembled that in humans.ImportanceAged BALB/c model are in use as a model of disease caused by SARS-CoV-2. Our research demonstrated SARS-CoV-2 can rapidly adapt in aged BALB/c mice through causing mutations at the RBD of the S protein. Moreover, SARS-CoV-2-infected aged BALB/c mice indicated that alveolar damage, interstitial pneumonia, and inflammatory immune responses were similar to the clinical manifestations of human infections. Therefore, our aged BALB/c challenge model will be useful for further understanding the pathogenesis of SARS-CoV-2 and for testing vaccines and antiviral agents.

8.
Endosc Int Open ; 9(3): E280-E283, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: covidwho-1114737

RESUMO

The Capsule Endoscopy Group of the Chinese Society of Digestive Endoscopy has issued recommendations for capsule endoscopy (CE) practice during the COVID-19 pandemic to standardize workflow, preventive strategies, and management of a CE unit and in so doing, ensure the safety of both medical staff and patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA